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1. Brief Survey of Particle Swarm Optimization 

With the industrial and scientific developments, many new optimization problems are 
needed to be solved. Several of them are complex multi-modal, high dimensional, non-
differential problems. Therefore, some new optimization techniques have been designed, 
such as genetic algorithm (Holland, 1992), ant colony optimization (Dorigo & Gambardella, 
1997), etc. However, due to the large linkage and correlation among different variables, 
these algorithms are easily trapped to a local optimum and failed to obtain the reasonable 
solution. 
Particle swarm optimization (PSO) (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) 
is a population-based, self-adaptive search optimization method motivated by the 
observation of simplified animal social behaviors such as fish schooling, bird flocking, etc. It 
is becoming very popular due to its simplicity of implementation and ability to quickly 
converge to a reasonably good solution (Shen et al., 2005; Eberhart & Shi, 1998; Li et al., 
2005). 
In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each 
solution called a "particle", flies in the problem search space looking for the optimal position 
to land. A particle, as time passes through its quest, adjusts its position according to its own 
"experience" as well as the experience of neighboring particles. Tracking and memorizing 
the best position encountered build particle's experience. For that reason, PSO possesses a 
memory (i.e. every particle remembers the best position it reached during the past) . PSO 
system combines local search method (through self experience) with global search methods 
(through neighboring experience), attempting to balance exploration and exploitation. 
A particle status on the search space is characterized by two factors: its position and 
velocity, which are updated by following equations: 

  (1) 

  (2) 

where  and  represent the velocity and position vectors of particle j at time t, 

respectively.  means the best position vector which particle j had been found, as well as 

 denotes the corresponding best position found by the whole swarm. Cognitive 
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coefficient c1 and social coefficient c2 are constants known as acceleration coefficients, and r1 
and r2 are two separately generated uniformly distributed random numbers in the range [0, 1]. 
To keep the moving stability,  a limited coefficient vmax is introduced to restrict the size of velocity. 

  (3) 

The first part of (1) represents the previous velocity, which provides the necessary 
momentum for particles to roam across the search space. The second part, known as the 
"cognitive" component, represents the personal thinking of each particle. The cognitive 
component encourages the particles to move toward their own best positions found so far. 
The third part is known as the "social" component, which represents the collaborative effect 
of the particles, in finding the global optimal solution. The social component always pulls 
the particles toward the global best particle found so far. 
Since particle swarm optimization is a new swarm intelligent technique, many researchers 
focus their attentions to this new area. One famous improvement is the introduction of the 
inertia weight (Shi & Eberhart, 1998a), similarly with temperature schedule in the simulated 
annealing algorithm. Empirical results showed the linearly decreased setting of inertia 
weight can give a better performance, such as from 1.4 to 0 (Shi & Eberhart, 1998a), and 0.9 
to 0.4 (Shi & Eberhart, 1998b, Shi & Eberhart, 1999). In 1999, Suganthan (Suganthan,1999) 
proposed a time-varying acceleration coefficients automation strategy in which both c1 and 
c2 are linearly decreased during the course of run. Simulation results show the fixed 
acceleration coefficients at 2.0 generate better solutions. Following Suganthan's method, 
Venter (Venter, 2002) found that the small cognitive coefficient and large social coefficient 
could improve the performance significantly. Further, Ratnaweera (Ratnaweera et al., 2004) 
investigated a time-varying acceleration coefficients. In this automation strategy, the 
cognitive coefficient is linearly decreased during the course of run, however, the social 
coefficient is linearly increased inversely. 
Hybrid with Kalman filter, Monson designed a new Kalman filter particle swarm 
optimization algorithm (Monson & Seppi, 2004) . Similarly, Sun proposed a new quantum 
particle swarm optimization (Sun et al., 2004) in 2004. From the convergence point, Cui 
designed a global convergence algorithm — stochastic particle swarm optimization (Cui & 
Zeng, 2004). There are still many other modified methods, such as fast PSO (Cui et al., 
2006a), predicted PSO (Cui et al.,2006b), etc. The details of these algorithms can be found in 
corresponding references. 
The PSO algorithm has been empirically shown to perform well on many optimization 
problems. However, it may easily get trapped in a local optimum for high dimensional 
multi-modal problems. With respect to the PSO model, several papers have been written on 
the subject to deal with premature convergence, such as the addition of a queen particle 
(Mendes et al., 2004), the alternation of the neighborhood topology (Kennedy, 1999), the 
introduction of subpopulation and giving the particles a physical extension (Lovbjerg et al., 
2001), etc. In this paper, an individual parameter selection strategy is designed to improve 
the performance when solving high dimensional multi-modal problems. 
The rest of this chapter is organized as follows: the section 2 analyzes the disadvantages of 
the standard particle swarm optimization parameter selection strategies; the individual 
inertia weight selection strategy is designed in section 3; whereas section 4 provides the 
cognitive parameter selection strategy. In section 5, the individual social parameter selection 
strategies is designed. Finally, conclusion and future research are discussed. 
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2. The Disadvantages of Standard Particle Swarm Optimization 

Partly due to the differences among individuals, swarm collective behaviors are complex 
processes. Fig.l and Fig.2 provide an insight of the special swarm behaviors about birds 
flocking and fish schooling. For a group of birds or fish families, there exist many 
differences. Firstly, in nature, there are many internal differences among birds (or fish), such 
as ages, catching skills, flying experiences, and muscles' stretching, etc. Furthermore, the 
lying positions also provide an important influence on individuals. For example, 
individuals, lying in the side of the swarm, can make several choices differing from center 
others. Both of these differences mentioned above provide a marked contribution to the 
swarm complex behaviors. 

 

Figure 1. Fish's Swimming Process 

 

Figure 2. Birds' Flying Process 
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For standard particle swarm optimization, each particle maintains the same flying (or 
swimming) rules according to (1), (2) and (3). At each iteration, the inertia weight w, 
cognitive learning factor c1 and social learning factor c2 are the same values within the whole 
swarm, thus the differences among particles are omitted. Since the complex swarm 
behaviors can emerge the adaptation, a more precise model, incorporated with the 
differences, can provide a deeper insight of swarm intelligence, and the corresponding 
algorithm may be more effective and efficient. Inspired with this method, we propose a new 
algorithm in which each particle maintains personal controlled parameter selection setting. 

3. Individual Inertia weight Selection Strategy 

Without loss of generality, this paper consider the following problem: 

  (4) 

From the above analysis, the new variant of PSO in this section will incorporate the personal 
differences into inertia weight of each particle (called PSO-IIWSS, in briefly) (Cai et al., 
2008), providing a more precise model simulating the swarm behaviors. However, as a new 
modified PSO, PSO-IIWSS should consider two problems listed as follows: 
1. How to define the characteristic differences of each particle? 
2. How to use the characteristic difference to control inertia weight, so as to affect its 

behaviors? 

3.1 How to define the characteristic differences? 

If the fitness value of particle u is better than which of particle m, the probability that global 
optima falls into u’s neighborhood is larger than that of particle m. In this manner, the 
particle u should pay more attentions to exploit its neighborhood. On the contrary, it may 
tend to explore other region with a larger probability than exploitation. Thus the 
information index is defined as follows: 
The information index - score of particle u at time t is defined as 

  

(5)

 

where xworst(t) and xbest(t) are the worst and best particles' position vectors at time t, respectively. 

3.2 How to use the characteristic differences to guild its behaviors? 

Since the coefficients setting can control the particles' behaviors, the differences may be 
incorporated into the controlled coefficients setting to guide each particle's behavior. The 
allowed controlled coefficients contain inertia weight w, two accelerators c1 and c2. In this 
section, inertia weight w is selected as a controlled parameter to reflect the personal 
characters. Since w is dependent with each particle, we use wu (t) representing the inertia 
weight of particle u at time t. 
Now, let us consider the adaptive adjustment strategy of inertia weight wu(t). The following 
part illustrates three different adaptive adjustment strategies. 
Inspired by the ranking selection mechanism of genetic algorithm (Mich ale wicz, 1992), the 
first adaptive adjustment of inertia weight is provided as follows: 
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The inertia weight wu(t) of particle u at time t is computed by 

  (6) 

where wlow(t) and whigh(t) are the lower and upper bounds of the swarm at time t. 
This adaptive adjustment strategy states the better particles should tend to exploit its 
neighbors, as well as the worse particles prefer to explore other region. This strategy implies 
the determination of inertia weight of each particle, may provide a large selection pressure. 
Compared with ranking selection, fitness uniform selection scheme (FUSS) is a new 
selection strategy measuring the diversity in phenotype space. FUSS works by focusing the 
selection intensity on individuals which have uncommon fitness values rather than on those 
with highest fitness as is usually done, and the more details can be found in (Marcus, 2002). 
Inspired by FUSS, the adaptive adjustment strategy two aims to provide a more chance to 
balance exploration and exploitation capabilities. 
The inertia weight wu(t) of particle u at time t is computed by 

  (7) 

where wlow(t) and whigh(t) are the lower and upper bounds of the swarm at time t. Scorerand(t) 
is defined as follows. 

(8) 

where r is a random number sampling uniformly between f(xbest(t)) and f(xworst(t)). 
Different from ranking selection and FUSS strategies which need to order the whole swarm, 
tournament strategy (Blickle & Thiele, 1995) is another type of selection strategy, it only uses 
several particles to determine one particle's selection probability. Analogized with 
tournament strategy, the adaptive adjustment strategy three is designed with local 
competition, and defined as follows: 
The inertia weight wu(t) of particle u at time t is computed by 

 

(9)

 

where wlow(t) and whigh(t)  are the lower and upper bounds of the swarm at time t. ( )
1r

x t  and 

( )
1r

x t  are two random selected particles uniformly. 

3.3 The Step of PSO-IIWSS 

The step of PSO-IIWSS is listed as follows. 

• Step l. Initializing each coordinate xjk(0) to a value drawn from the uniform random 
distribution on the interval [xmin,xmax], for j = 1,2, ...,s and k = 1,2, ...,n. This distributes the 
initial position of the particles throughout the search space. Where s is the value of the 
swarm, n is the value of dimension. Initializing each vjk(0) to a value drawn from the 
uniform random distribution on the interval [—vmax, vmax], for all j and k. This distributes 
the initial velocity of the particles. 

• Step 2. Computing the fitness of each particle. 

• Step 3. Updating the personal historical best positions for each particle and the swarm; 

www.intechopen.com



Particle Swarm Optimization 

 

94 

• Step 4. Determining the best and worst particles at time t, then, calculate the score of 
each particle at time t. 

• Step 5. Computing the inertia weight value of each particle according to corresponding 
adaptive adjustment strategy one,two and three (section 3.2, respectively) . 

• Step 6. Updating the velocity and position vectors with equation (1),(2) and (3) in which 
the inertia w is changed with wj(t). 

• Step 7. If the stop criteria is satisfied, output the best solution; otherwise, go step 2. 

3.4 Simulation Results 

3.4.1 Selected Benchmark Functions 

In order to certify the efficiency of the PSO-IIWSS, we select five famous benchmark 
functions to testify the performance, and compare PSO-IIWSS with stan- 
dard PSO (SPSO) and Modified PSO with time- varying accelerator coefficients 
(MPSO_TVAC) (Ratnaweera et al, 2004). Combined with different adaptive adjustment 
strategy of inertia weight one, two and three, the corresponding versions of PSO-IIWSS are 
called PSO-IIWSS1, PSO-IIWSS2, PSO-IIWSS3, respectively. 
Sphere Modal: 

 

where  100.0, and 

 

Schwefel Problem 2.22: 

 

where  10.0, and 

 

Schwefel Problem 2.26: 

 

where  500.0, and 

 

Ackley Function: 
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where 32.0, and 

 

Hartman Family: 

 

where jx ∈  [0.0,1.0], and aij is satisfied with the following matrix. 

3 10 30

0.1 10 35

3 10 30

0.1 10 35

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 

pij is satisfied with the following matrix. 

0. 0. 0 0.

0. 0. 0. 0

0. 0 0. 0.

0.0 0. 0.

3687 117 2673

4699 4387 747

1 91 8732 5547

3815 5743 8828

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠
 

ci is satisfied with the following matrix. 

1

1.2

3

3.2

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 

 

Sphere Model and Schwefel Problem 2.22 are unimodel functions. Schwefel Problem 2.26 
and Ackley function are multi-model functions with many local minima,as well as Hartman 
Family with only several local minima. 

3.4.2 Parameter Setting 

The coefficients of SPSO,MPSO_TVAC and PSO-IIWSS are set as follows: 
The inertia weight w is decreased linearly from 0.9 to 0.4 with SPSO and MPSO_TVAC, 
while the inertia weight lower bounds of PSO-IIWSS is set 0.4, and the upper bound of PSO-
IIWSS is set linearly from 0.9 to 0.4. Two accelerator coefficients c1 and c2 are both set to 2.0 
with SPSO and PSO-IIWSS, as well as in MPSO_TVAC, c1 decreases from 2.5 to 0.5,while c2 

www.intechopen.com



Particle Swarm Optimization 

 

96 

increases from 0.5 to 2.5. Total individuals are 100 except Hartman Family with 20, and vmax 

is set to the upper bound of domain.The dimensions of Sphere Model, Schwefel Problem 
2.22,2.26 and Ackley Function are set to 30,while Hartman Family's is 3.Each experiment the 
simulation runs 30 times while each time the largest evolutionary generation is 1000 for 
Sphere Model, Schwefel Problem 2.22, Schwefel Problem 2.26, and Ackley Function, and 
due to small dimensionality, Hartman Family is set to 100. 

3.4.3 Performance Analysis 

Table 1 to 5 are the comparison results of five benchmark functions under the same 
evolution generations respectively.The average mean value and average 

standard deviation of each algorithm are computed with 30 runs and listed as follows. 
From the Tables, PSO-IIWSSI maintains a better performance than SPSO and MPSO_TVAC 
with the average mean value. For unimodel functions, PSO-IIWSS3 shows preferable 
convergence capability than PSO-IIWSS2,while vice versa for the multi-model functions. 
From Figure 1 and 2,PSO-IIWSSI and PSO-IIWSS3 can find the global optima with nearly a 
line track, while PSO-IIWSSI owns the fast search capability during the whole course of 
simulation for figure 3 and 4. PSO-IIWSS2 shows the better search performance with the 
increase of generations. In one word, PSO-IIWSSI owns a better performance within the 
convergence speed for all functions nearly. 

 

Algorithm Average Mean Value Average Standard Deviation 

SPSO 9.9512e-006 1.4809e-005 

MPSO_TVAC 4.5945e-018 1.9379e-017 

PSO-IIWSSI 1.4251e-023 1.8342e-023 

PSO-IIWSS2 1.2429e-012 2.8122e-012 

PSO-IIWSS3 1.3374e-019 6.0570e-019 

Table 1. Simulation Results of Sphere Model 

Algorithm Average Mean Value Average Standard Deviation 

SPSO 7.7829e-005 7.5821e-005 

MPSO_TVAC 3.0710e-007 1.0386e-006 

PSO-IIWSSI 2.4668e-015 2.0972e-015 

PSO-IIWSS2 1.9800e-009 1.5506e-009 

PSO-IIWSS3 3.2359e-012 4.1253e-012 

Table 2. Simulation Results of Schwefel Problem 2.22 

Algorithm Average Mean Value Average Standard Deviation 

SPSO -6.2474e+003 9.2131e+002 

MPSO_TVAC -6.6502e+003 6.0927e+002 

PSO-IIWSSI -7.7455e+003 8.0910e+002 

PSO-IIWSS2 -6.3898e+003 9.2699e+002 

PSO-IIWSS3 -6.1469e+003 9.1679e+002 

Table 3. Simulation Results of Schwefel Problem 2.26 
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Algorithm Average Mean Value Average Standard Deviation 

SPSO 8.8178e-004 6.8799e-004 

MPSO_TVAC 1.8651e-005 1.0176e-004 

PSO-IIWSS1 2.9940e-011 4.7552e-011 

PSO-IIWSS2 3.8672e-007 5.6462e-007 

PSO-IIWSS3 3.3699e-007 5.8155e-007 

Table 4. Simulation Results of Ackley Function 

Algorithm Average Mean Value Average Standard Deviation 

SPSO -3.7507e+000 1.0095e-001 

MPSO_TVAC -3.8437e+000 2.9505e-002 

PSO-IIWSS1 -3.8562e+000 1.0311e-002 

PSO-IIWSS2 -3.8511e+000 1.6755e-002 

PSO-IIWSS3 -3.8130e+000 5.2168e-002 

Table 5. Simulation Results of Hartman Family 

3.5 Individual non-linear inertia weight selection strategy (Cui et al., 2008) 

3.5.1  PSO-IIWSS with Different Score Strategies (PSO-INLIWSS) 
As mentioned above, the linearly decreased score strategy can not reflect the truly complicated search 

process of PSO. To make a deep insight of action for score, three non-linear score strategies are 

designed in this paper. These three strategies are unified to a power function, which is set to the 

following equation: 

  
(10)

 

where k1 and k2 are two integer numbers. 
Figure 3 shows the trace of linear and three non-linear score strategies, respectively. In 
Figure 1, the value f(xbest(t)) is set 1, as well as f(xworst(t)) is 100. When k1 and k2 are both set to 
1, it is just the score strategy proposed in [?], which is also called strategy one in this paper. 
While k1 > 1 and k2 = 1, this non-linear score strategy is called strategy two here. And 
strategy three corresponds to k1 = 1 and k2 > 1, strategy four corresponds to k1 > k2 > 1. 
Description of three non-linear score strategies are listed as follows: Strategy two: the curve 
k1 = 2 and k2 = 1 in Figure 3 is an example of strategy two. It can be seen this strategy has a 
lower score value than strategy one. However, the increased ratio of score is not a constant 
value. For those particles with small fitness values, the corresponding score values are 
smaller than strategy one, and they pay more attention to exploit the region near the current 
position. However, the particles tends to make a local search is larger than strategy one due 
to the lower score values. Therefore, strategy two enhances the local search capability. 
Strategy three: the curve k1 = 1 and k2 = 2 in Figure 3 is an example of strategy three. As we 
can see, it is a reversed curve compared with strategy two. Therefore, it enhances the global 
search capability. 
Strategy four: the curve k1 = 2 and k2 = 5 in Figure 3 is an example of strategy four. The first 
part of this strategy is similar with strategy two, as well as the later part is similar with 
strategy three. Therefore, it augments both the local and global search capabilities. 
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Figure 3. Illustration of Score Strategies 

The step of PSO-INLIWSS with different score strategies are listed as follows. 

• Step l. Initializing the position and velocity vectors of the swarm, and de termining the 
historical best positions of each particle and its neighbors; 

• Step 2. Determining the best and worst particles at time t with the following definitions. 

  (11) 

and 

  (12) 

• Step 3. Calculate the score of each particle at time t with formula (10) using different 
strategies. 

• Step 4.  Calculating the PSO-INLIWSS inertia weight according to formula (6); 
• Step 5. Updating the velocity and position vectors according to formula (1), (2) and (3); 

• Step 6. Determining the current personal memory (historical best position); 

• Step 7. Determining the historical best position of the swarm; 

• Step 8. If the stop criteria is satisfied, output the best solution; otherwise, go step 2. 

3.5.2 Simulation Results 

To certify the efficiency of the proposed non-linear score strategy, we select five famous 
benchmark functions to test the performance, and compared with standard PSO (SPSO), 
modified PSO with time- varying accelerator coefficients (MPSO-TVAC) (Ratnaweera et al., 
2004), and comprehensive learning particle swarm optimization (CLPSO) (Liang et al., 
2006). Since we adopt four different score strategies, the proposed methods are called PSO-
INLIWSS1 (with strategy one, in other words, the original linearly PSO-IIWSS1), PSO-
INLIWSS2 (with strategy two), PSO-INLIWSS3 (with strategy three) and PSO-INLIWSS4 
(with strategy four), respectively. The details of the experimental environment and results 
are explained as follows. 
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In this paper, five typical unconstraint numerical benchmark functions are used to test. They 
are: Rosenbrock, Schwefel Problem 2.26, Ackley and two Penalized functions. 
Rosenbrock Function: 

 

where  30.0, and 

 

Schwefel Problem 2.26: 

 

where  500.0, and 

 

Ackley Function: 

 

where 32.0, and 

 

Penalized Function l: 

 

where  50.0, and 
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Penalized Function 2: 

 

where  50.0, and 

 

Generally, Rosenbrock is viewed as a unimodal function, however, in recent literatures, 
several numerical experiments (Shang & Qiu, 2006) have been made to show Rosenbrock is 
a multi-modal function with only two local optima when dimensionality between 4 to 30. 
Schwefel problem 2.26, Ackley, and two penalized functions are multi-model functions with 
many local minima. 
The coefficients of SPSO, MPSO-TVAC, and PSO-INLIWSS are set as follows: inertia weight 
w is decreased linearly from 0.9 to 0.4 with SPSO and MPSO-TVAC, while the inertia weight 
lower bounds of all version of PSO-INLIWSS are both set to 0.4, and the upper bounds of 
PSO-INLIWSS are both set linearly decreased from 0.9 to 0.4. Two accelerator coefficients c1 
and c2 are set to 2.0 with SPSO and PSO-INLIWSS, as well as in MPSO-TVAC, c1 decreases 
from 2.5 to 0.5, while c2 increases from 0.5 to 2.5. Total individuals are 100, and the velocity 
threshold vmax is set to the upper bound of the domain. The dimensionality is 30. In each 
experiment, the simulation run 30 times, while each time the largest iteration is 50 x 
dimension. 

Algorithm Mean Value Std Value 

SPSO 5.6170e+001 4.3584e+001

MPSO-TVAC 3.3589e+001 4.1940e+001

CLPSO 5.1948e+001 2.7775e+001

PSO-INLIWSS1 2.3597e+001 2.3238e+001

PSO-INLIWSS2 3.4147e+001 2.9811e+001

PSO-INLIWSS3 4.0342e+001 3.2390e+001

PSO-INLIWSS4 3.1455e+001 2.4259e+001

Table 6. The Comparison Results for Rosenbrock 

Algorithm Mean Value Std Value 

SPSO -6.2762e+003 1.1354e+003

MPSO-TVAC -6.7672e+003 5.7050e+002

CLPSO -1.0843e+004 3.6105e+002

PSO-INLIWSS1 -7.7885e+003 1.1526e+003

PSO-INLIWSS2 -7.2919e+003 1.1476e+003

PSO-INLIWSS3 -9.0079e+003 7.1024e+002

PSO-INLIWSS4 -9.0064e+003 9.6881e+002

Table 7. The Comparison Results for Schwefel Problem 2.26 
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For Rosenbrock (see Table 6), because there is an additional local optimum near (-1, 0, 0,...,0), 
the performance of the MPSO-TVAC, PSO-INLIWSS1 and PSO-INLIWSS4 are better than 
others. We also perform several other unimodel and multi-modal functions with only few 
local optima, the PSO-INLIWSS1 are always the best one within these seven algorithms. 
For Schwefel problem 2.26 (Table 7) and Ackley (Table 8), the performance of PSO-
INLIWSS3 and PDPSO4 are nearly the same. Both of them are better than others. 
However, for two penalized functions (Table 9 and 10), the performance of PSO-INLIWSS3 
is not the same as the previous two, although PSO-INLIWSS4 is still stable and better than 
others. As we known, both of these two penalized functions has strong linkage among 
dimensions. This implies PSO-INLIWSS4 is more suit for multi-modal problems. 
Based on the above analysis, we can draw the following two conclusions: 
(l) PSO-INLIWSSl (the original version of PSO-IIWSS1) is suit for unimodel and multi-
modal functions with a few local optima; 
(2) PSO-INLIWSS4 is the most stable and effective among three score strategies. It is fit for 
multi-modal functions with many local optima especially for linkages among dimensions; 

Algorithm Mean Value Std Value

SPSO 5.8161e-006 4.6415e-006
MPSO-TVAC 7.5381e-007 3.3711e-006
CLPSO 5.6159e-006 4.9649e-006
PSO-INLIWSS1 4.2810e-014 4.3890e-014
PSO-INLIWSS2 1.1696e-011 1.2619e-011
PSO-INLIWSS3 2.2559e-014 8.7745e-015

PSO-INLIWSS4 2.1493e-014 7.8195e-015

Table 8. The Comparison Results for Ackley 

Algorithm Mean Value Std Value 

SPSO 6.7461e-002 2.3159e-001

MPSO-TVAC 1.8891e-017 6.9756e-017

CLPSO 1.0418e-002 3.1898e-002

PSO-INLIWSS1 1.6477e-025 4.7735e-025

PSO-INLIWSS2 6.2234e-026 1.6641e-025

PSO-INLIWSS3 2.4194e-024 7.6487e-024

PSO-INLIWSS4 2.2684e-027 4.4964e-027

Table 9. The Comparison Results for Penalized Functionl 

Algorithm Mean Value Std Value 

SPSO 5.4943e-004 2.4568e-003

MPSO-TVAC 9.3610e-027 4.1753e-026

CLPSO 1.1098e-007 2.6748e-007

PSO-INLIWSS1 4.8692e-027 1.3533e-026

PSO-INLIWSS2 2.8092e-028 5.6078e-028

PSO-INLIWSS3 9.0765e-027 2.5940e-026

PSO-INLIWSS4 8.2794e-028 1.6562e-027

Table 10. The Comparison Results for Penalized Function2 
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4. Individual Cognitive Selection Strategy 

Because each particle maintains two types of performance at time t: the fitness value 
 of historical best position found by particle j and that of current position 

, respectively. Similarly, two different rewards of environment are also designed 

associated with  and . For convenience, the reward based upon 

 is called the self-learning strategy one, and the other one is called the self-learning 

strategy two. The details of these two strategies are explained as follows. 

4.1 Self-learning Strategy One 

Let us suppose  is the historical best position vector of 

the swarm at time t, where n and  denote the dimensionality and the historical best 

position found by particle j until time t. 
The expectation limitation position of particle j of standard version of PSO is 

  
(13)

 

if c1 and  are constant values. Thus, a large c1 makes the  moving 

towards , and exploits near  with more probability, and vice versa. Combined the 

better   implies the more capability of which global optima falls into, the cognitive 

coefficient is set as follows. 

  
 (14)

 

where clow, and chigh are two predefined lower and upper bounds to control this coefficient. 
Reward1j(t) is defined 

  

(15)

 

where fworst and fbest denote the worst and best values among . 

4.2 Self-learning Strategy Two 

Let us suppose  is the population at time t, where n, 

 denote the dimensionality and the position of particle j at time t. 

Different from strategy one, if the performance  is better than  (j and k are 

arbitrary chosen from the population), the probability of global optimal fallen near  is 

larger than , thus, particle j should exploit near its current position with a larger 
probability than particle k. It means c1,j (t) should be less than c1,k (t) to provide little affection 
of historical best position , and the adjustment is defined as follows 

  
(16)

 

where Reward2j(t) is defined as 
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(17)

 

where fworst and fbest denote the worst and best values among . 

4.3 Mutation Strategy 

To avoid premature convergence, a mutation strategy is introduced to enhance the ability 
escaping from the local optima. 
This mutation strategy is designed as follows. At each time, particle j is uniformly random 
selected within the whole swarm, as well as the dimensionality k is also uniformly random 
selected, then, the vjk(t) is changed as follows. 

  
(18)

 

where r1 and r2 are two random numbers generated with uniform distribution within 0 and 1. 

4.4 The Steps of PSO-ILCSS 

For convenience, we call the individual Linear Cognitive Selection Strategy(Cai X.J. et 
al.,2007;Cai X.J. et al.,2008) as ILCSS, and the corresponding variant is called PSO-ILCSS. 
The detailed steps of PSO-ILCSS are listed as follows. 

• Step l. Initializing each coordinate xjk (0) and vjk (0) sampling within [xmin, xmax], and  
[0, vmax], respectively, determining the historical best position by each particle and the 
swarm. 

• Step 2. Computing the fitness of each particle. 

• Step 3. For each dimension k of particle j, the personal historical best position pjk (t) is 
updated as follows. 

  

(19)

 

• Step 4. For each dimension k of particle j, the global best position pgk (t) is updated as 
follows. 

  

(20)

 

• Step 5. Selecting the self-learning strategy:if strategy one is selected, computing the 
cognitive coefficient c1,j (t) of each particle according to formula (14) and (15); otherwise, 
computing cognitive coefficient c1,j (t) with formula (16) and (17). 

• Step 6. Updating the velocity and position vectors with equations (l)-(3). 

• Step 7. Making mutation operator described in section 4.3. 

• Step 8. If the criteria is satisfied, output the best solution; otherwise, goto step 2. 

4.5 Simulation Results 

Five famous benchmark functions are used to test the proposed algorithm's efficiency. They 
are Schwefel Problem 2.22,2.26, Ackley, and two different Penalized Functions, the global 
optima is 0 except Schwefel Problem 2.26 is -12569.5, while Schwefel Problem 2.22 is 
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unimodel function. Schwefel Problem 2.26,Ackley function and two Penalized Functions are 
multi-model functions with many local minima. 
In order to certify the efficiency, four different versions are used to compare: PSO-ILCSS 
with self-learning strategy one (PSO-ILCSSI), PSO-ILCSS with self-learning strategy two 
(PSO-ILCSS2),standard PSO (SPSO) and Modified PSO with time-varying accelerator 
coefficients (MPSO-TVAC) (Ratnaweera et al., 2004). 
The coefficients of SPSO,MPSO-TVAC,PSO-ILCSS1 and PSO-ILCSS2 are set as follows: the 
inertia weight w is decreased linearly from 0.9 to 0.4. Two accelerator coefficients c1 and c2 
are both set to 2.0 with SPSO, and in MPSO-TVAC, ci decreased from 2.5 to 0.5,while c2 
increased from 0.5 to 2.5. In PSO-ILCSSI and PSO-ILCSS2, the lower bounds clow of c1 set to 
1.0, and the upper bound chigh set to linearly decreased from 2.0 to 1.0, while c2 is set to 2.0. 
Total individual is 100, and the dimensionality is 30, and vmax is set to the upper bound of 
domain. In each experiment,the simulation run 30 times, while each time the largest 
evolutionary generation is 1000. 
Table 2 is the comparison results of five benchmark functions under the same evolution 
generations. The average mean value and average standard deviation of each algorithm are 
computed with 30 runs and listed as follows. 

Function Algorithm Average Mean Value Average Standard Deviation 

SPSO 6.6044e-005 4.7092e-005 

MPSO-TVAC 3.0710e-007 1.0386e-006 

PSO-ILCSS1 2.1542e-007 3.2436e-007 
Fl 

PSO-ILCSS2 9.0189e-008 1.3398e-007 

SPSO -6.2474e+003 9.2131e+002 

MPSO-TVAC -6.6502e+003 6.0927e+002 

PSO-ILCSS1 -8.1386e+003 6.2219e+002 
F2 

PSO-ILCSS2 -8.0653e+003 7.2042e+002 

SPSO 1.9864e-003 6.0721e-003 

MPSO-TVAC 1.8651e-005 1.0176e-004 

PSO-ILCSS1 3.8530e-008 3.8205e-008 
F3 

PSO-ILCSS2 1.3833e-008 1.0414e-008 

SPSO 4.3043e-002 6.6204e-002 

MPSO-TVAC 1.7278e-002 3.9295e-002 

PSO-ILCSS1 9.1694e-012 3.4561e-011 
F4 

PSO-ILCSS2 9.7771e-014 4.9192e-013 

SPSO 4.3662e-003 6.3953e-003 

MPSO-TVAC 3.6624e-004 2.0060e-003 

PSO-ILCSS1 9.4223e-013 3.9129e-012 
F5 

PSO-ILCSS2 4.6303e-015 1.0950e-014 

Table 11. The Comparison Results of Benchmark Function 

From the Table 2, PSO-ILCSSI and PSO-ILCSS2 both maintain better performances than 
SPSO and MPSO-TVAC no matter the average mean value or standard deviation. The 
dynamic performances of PSO-ILCSSI and PSO-ILCSS2 are near the same with SPSO and 
MPSO-TVAC in the first stage, although PSO-ILCSSI and PSO-ILCSS2 maintains quick 
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global search capability in the last period. In one words, the performances of PSO-ILCSSI 
and PSO-ILCSS2 surpasses slightly than which of MPSO-TVAC and SPSO a little for 
unimodel functions, while for the multi-model functions, PSO-ILCSSI and PSO-ILCSS2 
show preferable results. 

5. Individual Social Selection Strategy 

5.1 Individual Linear Social Selection Strategy (ILSSS) 

Similarly with cognitive parameter, a dispersed control manner (Cai et al., 2008) is 
introduced, in which each particle selects its social coefficient value to decide the search 
direction: 

 
or

 
. 

Since the literatures only consider the extreme value , however, they neglect the differences 

between  and . These settings lose some information maybe useful to find the global optima or 

escape from a local optima. Thus, we design a new index by introducing the performance differences, 

and the definition is provided as follows: 

  

(21)

 

where fworst(t) and fbest(t) are the worst and best fitness values of the swarm at time t, 
respectively. Occasionally, the swarm converges onto one point, that means fworst(t) = fbest(t). 
In this case, the value Gradeu (t) of arbitrary particle u is set to 1. Gradeu (t) is an information 
index to represent the differences of particle u at time t, according to its fitness value of the 
current position. The better the particle is, the larger Gradeu (t) is, and vice versa. 
As we known, if the fitness value of particle u is better than which of particle m, the 
probability that global optima falls into m’s neighborhood is larger than that of particle m. In 
this manner, the particle u should pay more attentions to exploit its neighborhood. On the 
contrary, it may tend to explore other region with a larger probability than exploitation. 
Thus, for the best solution, it should make complete local search around its historical best 
position, as well as for the worst solution, it should make global search around . Then, the 

dispersed social coefficient of particle j at time t is set as follows: 

  (22) 

where cup and clow, are two predefined numbers, and c2,j (t) represents the social coefficient of 
particle j at time t. 

5.2 Individual Non-linear Social Selection Strategy(INLSSS) 

As mentioned before, although the individual linear social parameter selection strategy 
improves the performance significantly, however, its linear manner can not meet the 
complex optimization tasks. Therefore, in this section, we introduce four different kinds of 
non-linear manner, and investigate the affection for the algorithm's performance. 
Because there are fruitful results about inertia weight, therefore, an intuitive and simple 
method is to introduce some effective non-linear manner of inertia weight into the study of 
social parameter automation. Inspired by the previous literatures (Chen et al., 2006; Jiang & 
Etorre, 2005), four different kinds of nonlinear manner are designed. 

www.intechopen.com



Particle Swarm Optimization 

 

106 

The first non-linear social automation strategy is called parabola opening downwards 
strategy : 

  
(23)

 

The second non-linear social automation strategy is called parabola opening upwards 
strategy: 

  

(24)

 

The third non-linear social automation strategy is called exponential curve strategy: 

  
(25)

 

The fourth non-linear social automation strategy is called negative-exponential strategy: 

  
(26)

 

5.3 The Steps of PSO-INLSSS 

The detail steps of PSO-INLSSS are listed as follows: 

• Step l. Initializing each coordinate k

jx  and k

jv  sampling within [xmin, xmax] and  

[—vmax,vmax], respectively. 

• Step 2. Computing the fitness value of each particle. 

• Step 3. For k'th dimensional value of j'th particle, the personal historical best position  

is updated as follows. 

  

(27)

 

• Step 4. For k'th dimensional value of j'th particle, the global best position  is updated 

as follows. 

  

(28)

 

• Step 5. Computing the social coefficient c2,j value of each particle according to formula 
(23)- (26). 

• Step 6. Updating the velocity and position vectors with equation (l)-(3) in which social 
coefficient c2 is changed with c2,j. 

• Step 7. Making mutation operator described in section 4.3. 

• Step 8. If the criteria is satisfied, output the best solution; otherwise, goto step 2. 
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5.4  Simulation Results 

To testify the performance of these four proposed non-linear social parameter automation 
strategies, three famous benchmark functions are chosen to test the performance, and 
compared with standard PSO (SPSO), modified PSO with time- varying accelerator 
coefficients (MPSO-TVAC) (Ratnaweera et al., 2004) and individual social selection strategy 
(PSO-ILSSS). Since we adopt four different non-linear strategies, the proposed methods are 
called PSO-INLSSS-1 (with strategy one), PSO-INLSSS-2 (with strategy two), PSO-INLSSS-3 
(with strategy three) and PSO-INLSSS-4 (with strategy four), respectively. The details of the 
experimental environment and results are explained as follows. 

5.4.1  Benchmarks 

In this paper, three typical unconstraint numerical benchmark functions are used to test. 
Rastrigin Function: 

 

where  5.12, and 

 

Ackley Function: 

 

where  32.0, and 

 

Penalized Function: 

 

where  50.0, and 
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5.4.2 Parameter Settings 

The coefficients of SPSO, MPSO-TVAC, PSO-ILSSS and PSO-INLSSS are set as follows: 
The inertia weight w is decreased linearly from 0.9 to 0.4 within SPSO, MPSO-TVAC, PSO-
ILSSS and PSO-INLSSS. Accelerator coefficients c1 and c2 are set to 2.0 within SPSO, as well 
as in MPSO-TVAC, ci decreases from 2.5 to 0.5, while c2 increases from 0.5 to 2.5. For PSO-
ILSSS and PSO-INLSSS, cognitive parameter c1 is fixed to 2.0, while social parameter c2 is 
decreased, whereas the lower bounds of c2 is set to 1.0, and the upper bounds is set from 2.0 
decreased to 1.0. Total individuals are 100, and the velocity threshold vmax is set to the upper 
bound of the domain. The dimensionality is 30 and 50. In each experiment, the simulation 
run 30 times, while each time the largest iteration is 50 x dimension. 

5.4.3 Performance Analysis 

The comparison results of these three famous benchmarks are listed as Table 12-14, in which 
Dim. represents the dimension, Alg. represents the corresponding algorithm, Mean denotes 
the average mean value, while STD denotes the standard variance. 
For Rastrigin Function (Table 12), the performances of all non-linear PSO-INLSSS algorithms 
are worse than PSO-ILSSS when dimension is 30, although they are better than SPSO and 
MPSO-TVAC. However, with the increased dimensionality, the performance of non-linear 
modified variant PSO-INLSSS surpasses that of PSO-ILSSS, for example, the best 
performance is achieved by PSO-INLSSS-3. This phenomenon implies that non-linear 
strategies can exactly affect the performance. 
For Ackley Function (Table 13) and Penalized Function (Table 14), the performance of PSO-
INLSSS-3 always wins. Based on the above analysis, we can draw the following two 
conclusions: 
PSO-INLSSS-3 is the most stable and effective among four non-linear strategies. It is 
especially suit for multi-modal functions with many local optima especially. 

 
 

Dim. Alg. Mean STD 

SPSO 1.7961e+001 4.2276e+000 

MPSO-TVAC 1.5471e+001 4.2023e+000 

PSO-ILSSS 6.4012e+000 5.0712e+000 

PSO-INLSSS-1 6.8676e+000 3.1269e+000 

PSO-INLSSS-2 8.2583e+000 2.3475e+000 

PSO-INLSSS-3 8.8688e+000 1.7600e+000 

30 

PSO-INLSSS-4 1.0755e+001 4.2686e+000 

SPSO 3.9958e+001 7.9258e+000 

MPSO-TVAC 3.8007e+001 7.0472e+000 

PSO-ILSSS 1.5380e+001 5.5827e+000 

PSO-INLSSS-1 1.4329e+001 4.7199e+000 

PSO-INLSSS-2 1.5623e+001 4.4020e+000 

PSO-INLSSS-3 1.3740e+001 4.3426e+000 

50 

PSO-INLSSS-4 2.1975e+001 5.6844e+000 

Table 12. Comparison Results for Rastrigin Function 
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6. Conclusion and Future Research 

This chapter proposes a new model incorporated with the characteristic differences for each 
particle, and the individual selection strategy for inertia weight, cognitive learning factor 
and social learning factor are discussed, respectively. Simulation results show the individual 
selection strategy maintains a fast search speed and robust. Further research should be made 
on individual structure for particle swarm optimization. 

 

Dim. Alg. Mean STD 

SPSO 5.8161e-006 4.6415e-006 

MPSO-TVAC 7.5381e-007 3.3711e-006 

PSO-ILSSS 4.7853e-011 9.1554e-011 

PSO-INLSSS-1 1.8094e-011 1.8533e-011 

PSO-INLSSS-2 1.1870e-011 2.0876e-011 

PSO-INLSSS-3 5.2100e-013 5.5185e-013 

30 

PSO-INLSSS-4 3.2118e-010 2.2272e-010 

SPSO 1.7008e-004 1.2781e-004 

MPSO-TVAC 4.4132e-002 1.9651e-001 

PSO-ILSSS 1.5870e-008 1.7852e-008 

PSO-INLSSS-1 2.3084e-008 3.6903e-008 

PSO-INLSSS-2 1.1767e-008 1.3027e-008 

PSO-INLSSS-3 4.7619e-010 1.4337e-009 

50 

PSO-INLSSS-4 3.4499e-008 4.7674e-008 

Table 13. Comparison Results for Ackley Function 
 

Dim. Alg. Mean STD 

SPSO 5.4943e-004 2.45683e-003 

MPSO-TVAC 9.3610e-027 4.1753e-026 

PSO-ILSSS 5.1601e-023 1.7430e-022 

PSO-INLSSS-1 6.0108e-020 1.5299e-019 

PSO-INLSSS-2 4.5940e-021 6.2276e-021 

PSO-INLSSS-3 9.7927e-024 1.6162e-023 

30 

PSO-INLSSS-4 1.0051e-016 1.9198e-016 

SPSO 6.4279e-003 1.0769e-002 

MPSO-TVAC 4.9270e-002 2.0248e-001 

PSO-ILSSS 1.6229e-017 3.9301e-017 

PSO-INLSSS-1 6.2574e-015 1.3106e-014 

PSO-INLSSS-2 1.6869e-014 3.3596e-014 

PSO-INLSSS-3 6.2959e-018 5.6981e-018 

50 

PSO-INLSSS-4 8.0886e-013 3.7972e-013 

Table 14. Comparison Results for Penalized Function 
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